
1

®

Implementing XSD Host Using a GPIO
AN1167.0Application Note February 9, 2005
Introduction
The ISL6296 uses the XSD single-wire serial bus to
communicate with a host microprocessor. This application
note describes how to implement the XSD bus host using a
single GPIO pin of the microprocessor. The XSD bus host
can also be implemented using a UART. The difference
between the two methods is how a bit is received or
transmitted. All algorithms at byte or higher level are the
same.

Typically there are two registers in the microprocessor
related to a GPIO port (of multiple GPIO pins). A data
direction register controls the direction (input or output) of
each GPIO pin of that port. If a GPIO pin is an output pin, the
value of the GPIO pin (either ‘1’ or ‘0’) is latched in a data
register. Writing to the register changes the value in the data
register and, hence, the GPIO pin output. Reading the data
register returns the value of the data register, which is the
same value as the GPIO output. If the GPIO pin is an input
pin, reading the data register returns the digital value applied
to the GPIO pin.

Implementing the XSD host requires only one GPIO pin.
Figure 1 shows the circuit diagram. The XSD transmitter is
required to be an open-drain output. When it is sending a
‘low’ signal, it pulls the XSD bus to low. When sending a
‘high’ signal, it leaves the XSD bus floating so that the

external pull-up resistor pulls the bus voltage to high. Some
microprocessors do not have an open-drain output. To deal
with such an issue, the GPIO pin can be set as an input pin
when transmitting the ‘high’ signal, to avoid actively driving
the XSD bus to high. Transmitting the ‘low’ signal is
straightforward, just set the GPIO pin as an output and write
a ‘0’ to the data register.

The XSD bus transaction consists of transmitting and/or
receiving of multiple bytes of data. Each byte is made of 8
bits. The following explains how a bit is transmitted or
received, followed by how a transaction is executed. The
implementation uses bus voltage polling to transmit or
receive a bit; hence, any interrupt function should be
disabled, unless the interrupt is very critical.

Sending a Bit
The bit values are determined by the timing of the rising
edge. Figure 2 shows the timing diagram. The ‘break’ signal
is a special signal and will be discussed later.

Sending a bit is straightforward. Figure 3 shows the flow
chart of the operation. For sending a digital ‘1’, the host first
drives the GPIO pin to low, delays for 0.3BT, and then
releases the GPIO by setting the pin as an input and waits
for 0.7BT. For sending a ‘0’, the first delay (delay A) is
changed to 0.7BT and the second delay (delay B) is 0.3BT.

FIGURE 1. THE INTERFACE CIRCUIT USING A SINGLE GPIO PIN

ISL6296

VSS

VDDXSD
R1

C1
D1

100

5.1V 0.1µF

VIO

GPIO

BATTERY PACK

RPU

MCU

2.2K

FIGURE 2. THE BUS SIGNAL TIMING DIAGRAM

glitch

t1
t0

tb

tg

XSD

1 0 Break

BT
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Intersil Americas Inc. 2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

Application Note 1167
A sample code written in C language for writing a bit to the
XSD bus is given in the Appendix.

The host can add in error checking capability to the
XSDWriteBit() subroutine (see the Appendix) while waiting
for bit time to finish, after releasing the bus. Figure 4 shows
the flow chart with the optional error checking function. A
small delay after releasing the bus, the host checks whether
or not the bus does rise to high. If it does not, then the
subroutine returns a bus error; otherwise, it returns a
success code. The C code for writing a digital bit with error
checking is also given in the Appendix.

Sending a ‘Break’
There are two types of break signal the host can send. The
power-on break is a short break that has a pulse width of
between 20μs to 35μs. A regular break has a pulse width of
1 to 100 of the bit time (BT). It is recommended to use 2 to
10 BT for the regular break.

Receiving a Bit
Since the XSD bus transaction is always initiated by the
host, the host can poll the XSD bus after sending the
instruction frame. Figure 5 shows the flow chart for the

receiving function. The host continuously monitors the XSD
bus for a falling edge. If the host cannot detect a falling edge
within a given TIMEOUT limit, it returns with a BitTIMEOUT
error code. Once the falling edge is detected, the host
samples the XSD bus value after delay F, which is
recommended to be 20μs. If the XSD bus value is ‘high’, the
detected falling edge is a glitch. If the bus rises after 0.3BT
but before 0.7BT, the received data is digital ‘1’. If the rising
edge occurs at 0.7BT, the received bit is ‘0’. If the rising edge
happens at 1.4BT, then a ‘break’ is received. If certain time
after 1.4BT, the rising edge still does not happen, there is a
problem with the bus and a BusErr code is returned.

Receiving a ‘Break’
The ISL6296 and future Intersil single-wire devices may
send a ‘break’ signal to the host for emergency indication. In
order for the microprocessor to respond to an unexpected

FIGURE 3. FLOW CHART FOR WRITING A BIT TO THE XSD
BUS

Set XSD Low

START

Delay A

Set XSD High

Delay B

END

FIGURE 4. FLOW CHART FOR WRITING A BIT TO THE XSD
BUS WITH ERROR CHECKING

Set XSD Low

START

Delay A

Set XSD High

Delay D

XSD = Low?

Return (BusErr)
Delay E

Return (Success)

END

N

Y

Optional
Error

Checking

FIGURE 5. THE FLOW CHART FOR READING A BIT FROM THE XSD BUS

START

XSD = Low?

BitTIMEOUT?

Return
(BitTIMEOUT)

Delay F

XSD = Low?

Return (Glitch)

Delay G

XSD = Low?

Return (0)

Delay H

XSD = Low?

Return (1)

END

Delay I

XSD = Low?

Return (break) Return (BusErr)

Y

Y

Y Y Y Y

N

N

N N N N
2 AN1167.0
February 9, 2005

Application Note 1167
‘break’ signal, a falling-edge signal on the GPIO pin should
trigger an interrupt. This interrupt should be disabled during
normal polling period of the bus transaction and enabled
when the bus is not expected to have transactions.

Sending a Byte
A byte consists of eight bits. The XSD bus sends the LSB
(Least Significant Bit) first. The subroutine XSDWriteByte()
shows how a byte is transmitted. The 8-bit data is passed to
the subroutine through the variable. This example calls the
XSDWriteBitwErrChk() subroutine. When an error occurs
during the transaction, the XSDWriteByte() subroutine
returns an error code. Otherwise, it returns a successful
code. The XSDWriteBit() can also be called for simplicity, if
error checking capability is not important.

Reading a Byte
The XSDReadByte() function calls the XSDReadBit() eight
times to read the byte data. The result byte data is passed
through the argument. If any error happens during the
transaction, an error code is returned by the function call.

Timing Specifications
The timings used in the subroutines are dependent on the
bus speed, or bit time (BT). Table 1 and Table 2 specify the
timings.

Table 1 is the timing specification for writing a bit without the
error checking capability. To write a ‘1’ to the XSD bus, the
host forces the bus to ‘low’, waits for the delay A for ‘1’, and
then releases the bus. The delay A can have a large
tolerance, but should be implemented as close to the typical
value as possible. The unit for the table is the nominal bit
time (BTN). For example, if the selected bus speed is
5.78kHz, the BTN = 1/5.78kHz = 173μs. The typical delay A
for ‘1’ is 0.3X 173 = 51.9μs. The delay B is the delay from the
rising edge to the end of the transmitting bit time. Counting
from the starting point of the bit time for the timing
specification reduces the cumulative error and therefore is
more accurate.

The timing specification for writing a bit with error checking, as
shown in Figure 4, can also use the specification in Table 1.
The delay A has the same specification as the values in
Table 1. The delay D is a small delay. A recommended value
is 10 to 20μs. Delay (D + E) has the same value as delay B.

Table 2 is the timing specification for the flow chart shown in
Figure 5. The maximum values are affected by the polling
(sampling) interval before the XSD bus voltage falls (t1 - t0,
as shown in Figure 7). If this interval is small compared to
the bit time, it can be neglected.

Instruction Frame
An instruction frame is a two-byte code that contains the
information of the device address, OPCODE (operation
code), BANK, EEPROM or register address, and the total
data byte count of the transaction. Figure 8 shows the bit
definition of the instruction frame. Refer to the datasheet for
more information. To send the instruction frame to the
ISL6296, the host calls the XSDWriteByte() function twice.
The first time is to send the lower byte (LoByte) and the
second time is to send the higher byte (HiByte).

FIGURE 6. TIMING DIAGRAM FOR WRITING A BIT TO THE
XSD BUS

0 0.3BT 0.7BT 1.0BT

TABLE 1. TIMINGS FOR WRITING A BIT WITHOUT ERROR
CHECKING

DELAY MIN (BTN) TYP (BTN) MAX (BTN) COMMENTS
A for ‘1’ 0.19 0.3 0.43
A for ‘0’ 0.57 0.7 0.82

A + B for ‘1’ 0.67 1.0 2.0
A + B for ‘0’ 1.15 1.15 2.0

TABLE 2. RECOMMENDED DELAY TIMES FOR READING
XSD BUS

DELAY MIN TYP MAX COMMENTS

F 20μs 25μs t1 to t2

G 0.34BTN 0.4BTN 0.62BTN - (t1-t0) t1 to t3

H 0.77BTN 0.8BTN 0.9BTN -(t1-t0) t1 to t4

I 1.53BTN 1.6BTN t1 to t5

FIGURE 7. TIMING DIAGRAM FOR READING A BIT FROM
THE XSD BUS

t0 t1 t3t2 t4 t5

0 20μs 0.3BT 0.7BT 1.0BT 1.4BT

FIGURE 8. INSTRUCTION FRAME

015

OPCODEBANKADDRESSBYTES CS

015

OPCODEBANKADDRESSBYTES CS

015

OPCODEBANKADDRESSBYTES CS

LoByteHiByte
78
3 AN1167.0
February 9, 2005

Application Note 1167
Writing Data to EEPROM
Before the secret address is locked out, the host can write to
any even number address, two bytes at a time. The only
exception is the location for the default trimming (0-01:
DTRM) that is a read-only address. Writing to DTRM will be
ignored. The instruction frame for writing to the EEPROM
transaction is shown in Figure 9. The CS bit is either ‘0’ or
‘1’, depending on the device address. The default value
when the device is shipped from the manufacture is ‘0’.
Since only even numbered addresses can be written and
only two bytes can be written every time, the LSB of the
address field is always ‘0’ and the BYTE field is always ‘010’.
To write two-byte data to the EEPROM, the host first sends
the two-byte instruction frame, then the byte that goes to the
address 00-0000XXX0 and last the byte goes to the address
00-0000XXX1. The XSDWriteByte() function is called four
times. An C-code example is given in this application note.
This example does not include the bus error handling
capability but can be added in with the error handling
capability that is already built-in in the XSDWriteByte()
function. It is important to point out that writing two bytes of
data to the EEPROM takes about 1.8ms. No bus activity
should happen during the 1.8ms; therefore, in the example
code, a 2ms delay is introduced before the subroutine
finishes.

Reading Data from EEPROM
There are two operations to read data from the EEPROM,
one with a CRC byte at the end (OPCODE = 11) and the
other one does not have the CRC byte (OPCODE = 01). The
instruction frame is similar to the one shown in Figure 9, with
the OPCODE field replaced with the read codes. Since
reading from the EEPROM is allowed to have up to 16 bytes
at a time, the BYTES field varies. Reading EEPROM
involves two times of XSDWriteByte() function call followed
by a number of the XSDReadByte() function call. The
number is the same as the total expected number of bytes to
be read. A C-code example is given in this application note
without the error handling capability for simplicity.

Authentication
The authentication process involves two actions. One is to
challenge the device and read back the hash result from the
device. The second one is to calculate the expected hash
result on the host itself. Both calculations are based on the
same 64-bit secret code and the 32-bit challenge code. The

calculation on the host side will be covered by a separate
application note. This section addresses how to challenge
and read the hash result from the ISL6296.

Three steps are involved to read the hash result from the
ISL6296:

1. Select the secrets from the three sets of secret stored in
the addresses between 0-02 to 0-0D. This step requires
a write transaction to address 2-00 (SESL register) with
one byte of data.

2. Write the challenge code to the ISL6296. This step
requires a write transaction to address 2-01 (CHLG
register) with four bytes of data. The four-byte data is the
challenge code.

3. Read the result from the AUTH register. This step
involves a read transaction from address 2-05 (AUTH
register) with one byte of data.

The above three steps are required every time an
authentication is performed.

Summary
This application described in detail how to and how easy to
implement an XSD bus host using a single GPIO pin. The
XSD host is capable of checking errors, such as that caused
by the XSD bus being shorted to ground or the XSD device
being disconnected from the bus. This application note also
provides examples of how to write data to EEPROM, how to
read data back from the device, and how the authentication
process is executed. Example C-codes are provided in the
appendix.

FIGURE 9. INSTRUCTION FRAME FOR WRITING TO EEPROM

015

OPCODEBANKADDRESSBYTES CS

015

OPCODEBANKADDRESSBYTES CS

015

OPCODEBANKADDRESSBYTES CS

000000 1 0000 0XXX X

LoByte

78

HiByte
4 AN1167.0
February 9, 2005

Application Note 1167
Appendix: Example C-Code

// bit 7 of Port A is used as the XSD bus
//PADDR is the data direction register address for port A
//PADR is the data register address for port A
#define SetXSDAsOutput PADDR |= 0x80; PADR &= 0x7F
#define SetXSDAsInput (PADDR &= 0x7F)
#define XSD (PADR & 0x80)

//The following defines the delay codes for 5.78KHz bus speed
#define delayA 12
#define delayB 31
#define delayC 23
#define delayD 1
#define delayE 5
#define delayF 0
#define delayG 12
#define delayH 20
#define delayI 40
#define delayJ 5
#define delayK 240
#define delayL 240
#define delayM 240
#define TIMEOUT 5000

//The following defines the error codes during bus communication
#define Zero 0
#define One 1
#define Success 2
#define BusErr 3
#define BitTIMEOUT 4
#define Glitch 5
#define XSDBreak 6

#define BYTE unsigned char

extern void Delay(BYTE time);
extern void XSDWriteBit(BYTE bit);
extern BYTE XSDWriteBitwErrChk(BYTE bit);
extern void XSDPoweronBreak(void);
extern void XSDRegularBreak(void);
extern BYTE XSDReadBit(void);
extern BYTE XSDReadBitwTimingIndication(void);
extern BYTE XSDWriteByte(BYTE data);
extern BYTE XSDReadByte(BYTE *data);
extern BYTE XSDWriteEEPROM(BYTE HiByte, BYTE LoByte, BYTE Byte1, BYTE Byte2);
extern BYTE XSDReadEEPROM2(BYTE HiByte, BYTE LoByte, BYTE *Byte1, BYTE *Byte2);
extern BYTE XSDAuthentication(BYTE CS, BYTE SESL, BYTE CHLG1,BYTE CHLG2, BYTE CHLG3, BYTE CHLG4, BYTE *AUTH);
5 AN1167.0
February 9, 2005

Application Note 1167
/*--
ROUTINE NAME : Delay()
INPUT/OUTPUT : time
DESCRIPTION : This routine introduces some delay. The delay time is not proportional to

the variable (time) because of the extra codes that need be excuted for
loading the routine.

---*/
void Delay(BYTE time)
{

BYTE i;
for (i = 0; i < time; i++);

}

/*---
ROUTINE NAME : XSDWriteBit()
INPUT/OUTPUT : bit
DESCRIPTION : Send a bit to the XSD bus. Before the calling this routine, the

data register value for the corresponding GPIO pin is already
set to '0'

---*/
void XSDWriteBit(BYTE bit)
{

if (bit)
{ //Write bit '1'

SetXSDAsOutput; //since the data register value is alrady '0',
// setting XSD pin as output drives the GPIO
//pin to LOW.

Delay(delayA); //delay A determines the rising edge. For
//5.78kHz bus speed.
//delay A should be 127us (0.7BT)

SetXSDAsInput; //Settig the GPIO as input resulting a floating
// GPIO pin. The XSD bus voltage is then pulled
// up by the resistor.

Delay(delayB); //delay B is to complete the bit time (BT). For
//5.78kHz speed, delay B should be 55us (0.3BT).

}
else
{ //Write bit '0'

SetXSDAsOutput;
Delay(delayB); //delay 0.3BT
SetXSDAsInput;
Delay(delayA); //delay 0.7BT

}
}

6 AN1167.0
February 9, 2005

Application Note 1167
/*---
ROUTINE NAME : XSDWriteBitwErrChk()
INPUT/OUTPUT : bit
DESCRIPTION : Send a bit to the XSD bus with error checking capability.

Before the calling this routine, the data register value for
the corresponding GPIO pin is already set to '0'.
The return value indicates either the transitting is successful
or failed.

---*/
BYTE XSDWriteBitwErrChk(BYTE bit)
{

if (bit)
{ //Write bit '1'

SetXSDAsOutput; //since the data register value is alrady '0',
// setting XSD pin as output drives the GPIO
//pin to LOW.

Delay(delayA); //delay A determines the rising edge. For
//5.78kHz bus speed.
//delay A should be 127us (0.7BT)

SetXSDAsInput; //Settig the GPIO as input resulting a floating
// GPIO pin. The XSD bus voltage is then pulled
// up by the resistor.

Delay(delayD);
if (XSD == 0) return (BusErr); //XSDBusErr needs be defined.
Delay(delayC); //XSD defined as (PADR & 0x80),

} //which is the bit 7 of PA
else
{ //Write bit '0'

SetXSDAsOutput;
Delay(delayB); //delay 0.3BT
SetXSDAsInput;
Delay(delayD); //delay 0.7BT
if (XSD == 0) return (BusErr);
Delay(delayE);

}
return (Success); //Success needs be defined.

}

/*--
ROUTINE NAME : XSDPoweronBreak()
INPUT/OUTPUT : None
DESCRIPTION : Send a 30us break signal
---*/
void XSDPoweronBreak(void)
{

SetXSDAsOutput; //since the data register value is alrady '0',
// setting XSD pin as output drives the GPIO
//pin to LOW.

Delay(delayJ); //delay 30us
SetXSDAsInput; //Settig the GPIO as input resulting a floating
Delay(delayK); //Additional delay, could be as short as 0us.

}

/*--
ROUTINE NAME : XSDRegularBreak()
INPUT/OUTPUT : None
DESCRIPTION : Send a regular break signal.
---*/
void XSDRegularBreak(void)
{

SetXSDAsOutput; //since the data register value is alrady '0',
// setting XSD pin as output drives the GPIO

//pin to LOW.
Delay(delayL); //delay 2BT
SetXSDAsInput; //Settig the GPIO as input resulting a floating
Delay(delayM); //Additional delay, could be as short as 0us.

}

7 AN1167.0
February 9, 2005

Application Note 1167
/*---
ROUTINE NAME : XSDReadBit()
INPUT/OUTPUT : bit
DESCRIPTION : Read the bit value to the variable (bit). The returned value from

the funtion contains either the XSD bit value or an error code.
---*/
BYTE XSDReadBit(void)
{

int TimeCount; //Count for TIMEOUT
 //TIMEOUT needs be defined.
TimeCount = 0;
while ((TimeCount <= TIMEOUT) && (XSD !=0)) TimeCount++;
if (TimeCount >= TIMEOUT)

return (BitTIMEOUT); //define BitTIMEOUT
else
{

Delay(delayF); //delay F is 20us
if (XSD != 0)

return (Glitch); //define Glitch
else
{

Delay(delayG);
if (XSD != 0) {

return (One); } //define Zero
else
{

Delay(delayH);
if (XSD != 0) {

return (Zero); }//define One
else
{

Delay(delayI);
if (XSD != 0) {

return (XSDBreak);}//define XSDBreak
else

return (BusErr); //define BusErr
}

}

}
}

}

/*---
ROUTINE NAME : XSDWriteByte()
INPUT/OUTPUT : data
DESCRIPTION : Write a Byte data to XSD bus, LSB first. The returned value

contains the error code if an error occurred.
---*/
BYTE XSDWriteByte(BYTE data)
{

BYTE i;

 for (i = 0; i < 8; i++)
 {

if (XSDWriteBitwErrChk(data & 0x01) != Success)
return (BusErr);

else
data >>=1;

 }
 return (Success);
}

8 AN1167.0
February 9, 2005

Application Note 1167
/*---
ROUTINE NAME : XSDReadByte()
INPUT/OUTPUT : data
DESCRIPTION : Read a Byte data from the XSD bus, LSB first.

The result is passed through the variable (data).
The function returns an error code if an error happens.

---*/
BYTE XSDReadByte(BYTE *data)
{

BYTE i;
BYTE result;
BYTE Temp;

Temp = 0;

 for (i = 0; i < 8; i++)
 {

Temp >>= 1;
result = XSDReadBit();
if (result == Zero)
{
}
else if (result == One)
{

Temp |= 0x80;
}
else
{

return (result);
}

 }
 *data = Temp;
 return (Success);
}

/*---
ROUTINE NAME : XSDWriteEEPROM()
INPUT/OUTPUT : HiByte, LoByte, Byte1, Byte2
DESCRIPTION : Write two bytes of data (Byte1 and Byte2) to the EEPROM.

The instruction frame is stored in the HiByte and LoByte.
Bus error can be returned but is not implemented in this example.
A regular break is send before the instruction frame.

--*/

BYTE XSDWriteEEPROM(BYTE HiByte, BYTE LoByte, BYTE Byte1, BYTE Byte2)
{

XSDRegularBreak(); //Send a regular break before the transaction
XSDWriteByte(LoByte); //lower 8 bits of the instruction frame
XSDWriteByte(HiByte); //higher 8 bits of the instruction frame
XSDWriteByte(Byte1); // data byte goes to the even address
XSDWriteByte(Byte2); // data byte goes to the odd address
Delay(0xFF); // Introduce more than 2ms delay for Write EEPROM
Delay(0xFF); // to finish.
Delay(0xFF);

}

9 AN1167.0
February 9, 2005

Application Note 1167
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to
verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com

/*--
ROUTINE NAME : XSDReadEEPROM2()
INPUT/OUTPUT : HiByte, LoByte, Byte1, Byte2
DESCRIPTION : Read two bytes of data (Byte1 and Byte2) from the EEPROM.

The instruction frame is stored in the HiByte and LoByte.
Bus error can be returned but is not implemented in this example.

--*/
BYTE XSDReadEEPROM2(BYTE HiByte, BYTE LoByte, BYTE *Byte1, BYTE *Byte2)
{

XSDRegularBreak(); //Send a regular break before the transaction
XSDWriteByte(LoByte); //lower 8 bits of the instruction frame
XSDWriteByte(HiByte); //higher 8 bits of the instruction frame
XSDReadByte(Byte1); // data byte goes to the even address
XSDReadByte(Byte2); // data byte goes to the odd address

}

/*--
ROUTINE NAME : XSDAuthentication()
INPUT/OUTPUT : CS, SESL, CHLG1, CHLG2, CHLG3, CHLG4, AUTH
DESCRIPTION : The entire authentication process. The SESL is the secret selection code.

The CHLG1 to CHLG4 are the challenge codes from LSB to MSB respectively.
The AUTH is the hash result. CS is the chip selection (or ISL6296 address)
Bus error can be returned but is not implemented in this example.

--*/

BYTE XSDAuthentication(BYTE CS, BYTE SESL, BYTE CHLG1,BYTE CHLG2, BYTE CHLG3, \
BYTE CHLG4, BYTE *AUTH)

{
BYTE LoByte;
BYTE HiByte;

//Write to the secret select register
HiByte = 0x20; //the Higher byte of the instruction frame
LoByte = 0x10; //the lower byte of the instruction frame
LoByte |= CS; //if the device address is '1', set bit 0 (LSM)

XSDRegularBreak(); //Send a regular break before the transaction
XSDWriteByte(LoByte); //lower 8 bits of the instruction frame
XSDWriteByte(HiByte); //higher 8 bits of the instruction frame
XSDWriteByte(SESL); // write the secret selection

//Write to the challenge register (four bytes)
HiByte = 0x80; // four bytes to write for challenge code
LoByte |= 0x20; //set the address to 0x01. The rest does not change.
XSDWriteByte(LoByte); //lower 8 bits of the instruction frame
XSDWriteByte(HiByte); //higher 8 bits of the instruction frame

 XSDWriteByte(CHLG1); //Write the four bytes challenge code
 XSDWriteByte(CHLG2);
 XSDWriteByte(CHLG3);
 XSDWriteByte(CHLG4);

//Read the authentication result
HiByte = 0x20; //one byte to read, address 2-05
LoByte |= 0x82; //change the instruction to read transaction
XSDWriteByte(LoByte); //lower 8 bits of the instruction frame
XSDWriteByte(HiByte); //higher 8 bits of the instruction frame
XSDReadByte(AUTH); // data byte goes to the even address

}

10 AN1167.0
February 9, 2005

